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Supplementary Material

A. Details of HOI4D
A.1. CAD Model Visualization

Figure 1. We show some examples of (a) our multi-view high-
resolution color images with various depression angles, (b) corre-
sponding CAD models.

Figure 1 shows some examples of CAD models in
HOI4D. We first manually decorate objects with stickers for
some categories to enrich the object texture and hide some
highly specular areas. We then use off-the-shelf software
packages [?, ?] to reconstruct the CAD model from multi-
view high-resolution color images. Various camera depres-
sion angles shown in Figure 1(a) provide realistic geometry
of the CAD model with the finest detail and reconstruct both
inner and outer surfaces of some specific categories such as
cup and storage furniture. More visualization of CAD mod-
els in HOI4D are shown in Figure 2.

A.2. Dataset Statistics

To better support various research fields with different
requirements for scene complexity, we manually divide all
scenes into simple and complex scenarios. In a simple
scene, the object interacted with is not obscured by sur-
rounding objects, and the variety of camera views in the

*Equal contribution.
†Corresponding author.

Scene Mean (std)
Simple 1.67 (0.79)

Complex 6.02 (2.93)

Table 1. The average number of objects in the simple and complex
scenes.

Scene 3D static scene 4D dynamic scene
Simple 6.3 10.7

Complex 13.9 17.0

Table 2. The percentage of objects points in the point cloud of
simple and complex scenes.

video is small to improve consistency across frames. Com-
plex scenes have no such restrictions. Figure 3 and Table 1
report the number of instances in different scenarios. More-
over, Table 2 reports the proportion of object points in the
point cloud of scenes in diverse categories.

A.3. Task Definitions

Table 3 shows the detailed tasks defined by each cate-
gory. There are 76 tasks in all 16 categories. Pick-and-place
tasks are included for each object, as well as functionality-
based tasks that can be used to perceive object mobility and
functionality in interactive scenarios.

A.4. Hand Pose Loss Terms in Hand Pose Annota-
tion

Joint angle loss. The joint angle loss term Lj is defined
following [?] as:

Lj =

45∑
i=1

max(θi − θm[i], 0) + max(θm[i]− θi, 0) (1)

where θi and θi correspond to the lower and upper limits of
the ith joint angle parameter θm[i] .
2D joint loss. The 2D joint loss of MANO joints is defined
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Figure 2. Some examples of CAD models among all 16 categories.

as:

L2D =

21∑
i=1

c[i]
∥∥∥proj(Jθm [i])− Janno[i]

∥∥∥2
2

(2)

where proj(Jθm [i]) denotes the 2D projection of the ith 3D
joint location Jθm , Janno[i] is the corresponding 2D anno-
tation, and c[i] is the confidence coefficient. In practice, we
set confidence coefficient c[i] to 1 if joint i is visible, and
0.8 otherwise.
Mask loss. The mask loss is defined following [?] as:

Lm = 1− ∥Îm ⊗ Im∥1
∥Îm ⊕ Im − Îm ⊗ Im∥1

(3)

where Îm and Im denote the rendered and the ground-truth
2D mask respectively. ⊕ and ⊗ are the pixel-wise product
and sum operators respectively.
Depth loss. The depth loss is defined following [?] as:

Ld =
∑

p∈Îm⊗Im

∥∥∥D̂p −Dp

∥∥∥
1

(4)

where D̂p and Dp denote the rendered and the ground-truth
depth at pixel p respectively. The depth loss calculate l1 loss
of depth in pixels where Îm and Im intersect.
Point cloud loss. We use chamfer-distance from the ren-
dered mano hand vertices to the ground truth point cloud
which refers to the depth image cropped by 2D hand mask.
This term compensates the depth loss, giving supervision to
all mano hand vertices.
Contact loss. The contact loss term LContact is defined
following [?] as:

LContact = λRLR + (1− λR)LA (5)

where attraction loss LA penalize hand vertices near the ob-
ject’s surface but are not in contact, repulsion loss LR penal-
izes hand and object interpenetration. The contact weight-
ing coefficient λR ∈ [0, 1] balances between LA and LR.
λR = 1 when the action segmentation label indicates the
hands are not interacting with the object. These terms is
manually tuned for different contact modes.
Temporal consistency loss. The temporal consistency loss



Bowl Bottle Mug Toy Car
Pick and place Pick and place Pick and place Pick and place

Put it in the drawer Pour all the water into a mug Put it in the drawer Push toy car
Take it out of the drawer Put it in the drawer Take it out of the drawer Put it in the drawer

Take the ball out of the bowl Take it out of the drawer Fill with water by a kettle Take it out of the drawer
Put the ball in the bowl Reposition the bottle Pour water into another mug

Pick and place(with ball) Pick and place(with water) Pick and place(with water)
Bucket Knife Kettle Chair

Pick and place Pick and place Pick and place Pick and place with both hands
Pour water into another bucket Put it in the drawer Pour water into a mug Pick and place with one hand

Take it out of the drawer
Cut apple

Storage Furniture Pliers Laptop Lamp
Open and close the drawer Pick and place Pick and place Pick and place
Open and close the door Put it in the drawer Open and close the display Turn and fold
Put the drink in the door Take it out of the drawer Turn on and turn off

Put the drink in the drawer Clamp something
Safe Garbage Can Scissors Stapler

Open and close the door Open and close Pick and place Pick and place
Put something in it Throw something in it Cut something Bind the paper

Take something out of it

Table 3. Task Definitions of 16 Categories.

(a) (b)

Figure 3. Sample scenes and statistics on the number of objects in
a scene. (a) Simple scenes. (b) Complex Scenes.

term Ltc is defined following [?] as:

Ltc =
∑
t∈T

(∥∆t
h∥2 + ∥∆t

h −∆t−1
h ∥2) (6)

where ∆t
h = θth−θt−1

h . T is an optimization batch consists
of 6 to 11 consecutive frames.

B. Qualitative analysis of Category-Level Pose
Tracking

Figure 4. Qualitative evaluation on the toy car trajectory.

Figure 4 below illustrates some failure cases of pose
tracking experiments. We found that human objects inter-
action is mainly responsible for failures for existing meth-
ods. When the camera moves, but the human is not inter-
acting with the object, the existing methods are capable of
this task; When the human interacts with the object, the oc-
clusion of the hand and the rapid movement of the object



greatly improves the difficulty of pose tracking. It is ex-
pected that more research will focus on category-level pose
tracking in real-world human-object interaction scenarios.

C. Categories of Action Segmentation

Figure 5. Categories of Action Segmentation.

Figure 5 shows the action categories defined in the ac-
tion segmentation task. Different from the action definition
in the existing action segmentation dataset, our action cat-
egory is a finer-grained label in the scene of human-object
interaction.

D. Imitation Learning for Robot Dexterous
Manipulation

HOI4D not only can serve for vision benchmarks regard-
ing category-level human-object interaction but also pro-
vides rich knowledge for robot learning. The human-object
interaction trajectories combined with the pose states of ob-
jects and hands can be naturally treated as demonstrations
for robot imitation learning. This allows robots to accom-
plish complex interactions with various objects, which are
still very challenging in the robotics community. In this sec-
tion, we consider a new robotics task named category-level
dexterous manipulation, where a dexterous hand needs to
manipulate novel object instances from a known object cat-
egory in a predefined way. Specifically, we train a robotic
agent to execute an object manipulation task in a simulation
environment following the design of ManiSkill [?], but with
the actuator being a dexterous hand. We validate that exist-
ing state-of-the-art RL algorithms could hardly achieve sat-
isfactory results on this challenging task, while significant
progress can be made through imitating the rich demonstra-
tions in HOI4D. This shows the value HOI4D brings to the

robot learning community. Below we present the experi-
ment in detail.

D.1. Environment Setup

Inspired by ManiSkill [?], we build an environment
based on SAPIEN [?] simulator.
Environment design: the environment use the SAPIEN
simulator with timestep set to 0.05. The environment
supports various interactions between the models presented
in HOI4D and PartNet and the SAPIEN model of robot
Adroit Hand. In this section, we choose toy car models for
imitation learning research.
Task definition: we define a Pick Up task that requires the
Adroit Hand to pick up a toy car on the table and leave it
a certain height off the table. The task is successful if the
toy car is close enough to the target location and is kept
static for a period of time afterwards. The time limit for
each episode is 200, and an episode will be evaluated as
unsuccessful if it goes beyond the time limit.
Observation: the observation of the task is composed
of three components: (i) joint angles and joint velocities
of the Adroit Hand; (ii) global position and velocities
of the Adroit Hand root; (iii) point cloud of the scene(4
dimensions: 3 for xyz position, 1 for segmentation that
discriminates Adroit Hand and car). The Observation is
suitable for studying category-level generalization. The
point cloud is captured from eight cameras mounted on the
table to provide a panoramic and object-centric view. To
avoid losing too much visual information when the Adroit
Hand is in contact with the object, four of these cameras
are close to the object and 90◦ apart from each other, and
the other four cameras are farther away from the object. In
addition, we downsample the point cloud to 1200 points to
increase training speed.
Action: the action space of the task is the motor command
of the 30 joints of the Adroit Hand. We use PID controllers
to control the joints of the Adroit Hand. We use velocity
controllers for all the joints. During training, the range
of the velocities is normalized to (-1, 1). The action
space corresponds to the normalized target velocities of all
controllers.
Reward: the reward function of the environment is set
upon three stages: (i) the first-stage reward gives punish-
ment to the distance between Adroit Hand’s palm and the
center of the toy car. It also contains a positive proportion
of the dot product of the vector from the Adroit Hand to the
object and the vector with palm orientation; (ii) the second-
stage reward discourages the relative velocity between the
Adroit Hand and the object. It is also negatively related to
the total distance between finger tips and the object mesh;
(iii) the final-stage reward is defined based on the height of
the Adroit Hand and the object. The reward is positively
correlated with these heights.



D.2. Demonstration Collection

Our demonstrations for imitation learning consists of
observations that represent states of the Adroit Hand and
the object being interacted with and actions that represent
the motion of the Adroit Hand, which are called state-
action demonstrations. We transform real hand-object in-
teraction videos in HOI4D to the state-action demonstra-
tions in SAPIEN [?], and the main challenges of this pro-
cess are three-fold. First, since the manipulation tasks in
the simulation environment only focus on the Adroit Hand
and the object interacted with, the complicated scenarios in
real videos may interfere with the imitation learning pro-
cess and become noise. Second, the human hand and robot
Adroit Hand are intrinsically different. Third, compared
with the third-person view, egocentric videos in HOI4D suf-
fer from more severe occlusion of both human hand and ob-
ject, which brings more inaccurate human hand and object
pose annotations for demonstration collection.

Inspired by DexMV [?], we divide the demonstration
collection process into three steps named hand joint retar-
geting, state-only demonstration collection and state-action
demonstration collection. We transform the human hand
pose represented as 51 DoF MANO model [?] to 30 DoF
Adroit Hand pose in the hand joint retargeting step. We then
combine poses of Adroit Hand and object to generate state-
only demonstrations, and finally compute the Adroit Hand
action vectors to obtain the state-action demonstrations and
use them as inputs of imitation learning.
Hand joint retargeting. Our hand joint retargeting method
is inspired by DexMV [?]. Given the original 3D positions
of human hand keypoints represented by MANO model [?],
our goal is to find the optimum robot Adroit Hand pose that
minimizes the distances between corresponding keypoints
from human hand and Adroit Hand. We use the task space
vectors [?, ?] and accordingly define the objective func-
tion [?] of the optimization problem. The 15 task space vec-
tors used in our method are designed based on DexPilot [?]:
vectors between five fingertips and vectors from wrist to fin-
gertips for both human hand and Adroit Hand.
State-only demonstration collection. While human hand-
object interaction videos are all provided from simple
scenes in HOI4D, a variety of backgrounds that are unre-
lated to the interaction process, such as tables and sofas with
diverse geometries and positions, may increase the variance
among videos and impede the learning of the hand-object
interaction process. Thus we obtain the human hand and
object poses using methods mentioned in the main paper,
and then other information in the videos are all discarded.
We use CAD models consistent with actual objects to build
the bridge between real-world and simulation environments
and place the CAD model and the Adroit Hand in corre-

Figure 6. Examples of state-only demonstrations.

sponding positions and orientations according to the poses
from videos. Figure 6 shows some examples of our state-
only demonstrations.
State-action demonstration collection. In our manipu-
lation task settings, the action vector is directly obtained
from the linear or angular velocity of each joint of the
Adroit Hand. For each joint of the Adroit Hand. We fit
the sequence of its angles with a cubic spline interpolation
model in the time dimension to improve the smoothness of
the motion trajectory, and the action can compute from the
derivative of the fitting function. Combining the state-only
demonstrations with the action vectors, we obtain the state-
action demonstrations for imitation learning.

D.3. Imitation Learning Approaches

We perform imitation learning algorithms by augment-
ing the Reinforcement Learning algorithms using our
demonstrations generated by the above methods. We
compare such approaches with the RL algorithms. For
RL algorithms, we adopt the commonly used Soft Actor-
Critic(SAC) [?]. For imitation learning algorithms,
we adopt the Generative Adversarial Imitation Learn-
ing(GAIL) [?], which is the SOTA IL method in robotic
manipulation. For a fair comparison, we use SAC algorithm
in the RL part of GAIL with the same hyper-parameters.
(Other RL and IL algorithms will be studied in our future
work).

We use point cloud-based vision architecture as our fea-
ture extractor since the input of our network contains point
cloud. The point cloud features include position(3 dimen-
sions: xyz)and segmentation masks(1 dimension for Adroit
Hand)and we concatenate the robot state(joint angles and
joint velocity of the Adroit Hand, global position and ve-
locities of Adroit Hand root)to the features of each point.

For the RL algorithm, we parameterized the policy net-



Figure 7. Comparison of RL agent and IL agent on the Pick Up
task. (Top Row) RL agent. (Bottom Row) IL agent.

work and the value network with the PointNet+Transformer
architecture that is the baseline backbone in ManiSkill [?].

For the IL algorithm, we use the same architecture in the
policy network and value network as the RL algorithm. For
the discriminator network in GAIL, we also use the Point-
Net+Transformer architecture. While the expert trajectories
are crucial for GAIL, we carefully select 12 demonstrations
with high quality from different toy cars as our expert tra-
jectories.

D.4. Results and Analysis

We evaluate the RL and IL methods on the Pick Up task.
In the experiments, the success rate is evaluated with three
random seeds. The results is presented in Table 4.

Figure 7 shows a comparison of RL agent and IL agent
on the Pick Up task.

Table 4 shows that the IL algorithm can outperform the
RL algorithm. While category-level dexterous manipula-
tion is still a challenging task in robotics, the success rate
of RL and IL algorithms are both low. Since our input ob-
servation for RL and IL is the point cloud of the scene, it is
harder for RL and IL agents to learn to pick up the toy car
than the previous works that always use the ground truth
states of the environment as input observation. We use only
12 demonstrations in IL that are generated from different
objects in the toy car category. These demonstrations can
greatly improve the success rate of the task, which shows
that our demonstrations in HOI4D can greatly help RL learn
better policy.

Method Mean success rate (std)
RL 3.5 (3.2)

GAIL 17.4 (7.9)

Table 4. The average success rate of different methods.
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